Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the wp-pagenavi domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/akreditasi.org/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the loginizer domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/akreditasi.org/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the schema-and-structured-data-for-wp domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/akreditasi.org/wp-includes/functions.php on line 6114
Rumus Limit: Pengertian dan Contoh Soal Beserta Jawaban - Akreditasi.org

Rumus Limit: Pengertian dan Contoh Soal Beserta Jawaban

Rumus Limit

Rumus limit- Dalam matematika, konsep limit digunakan untuk menjelaskan perilaku suatu fungsi saat peubah bebasnya mendekati suatu titik tertentu, atau menuju tak hingga; atau perilaku dari suatu barisan saat indeks mendekati tak hingga. 

Limit dipakai dalam kalkulus untuk membangun pengertian kekontinuan, turunan dan integral.

Pengertian Limit Fungsi

Limit fungsi adalah nilai yang dihasilkan oleh suatu fungsi ketika variabel yang terkait mendekati suatu nilai tertentu. Secara simbolis, limit fungsi dapat dituliskan sebagai berikut:

lim f(x) = L
x->a

Di mana f(x) adalah fungsi yang ingin dihitung limitnya, a adalah nilai yang variabel mendekati, dan L adalah nilai limit yang dihasilkan.

Cara Menghitung Limit Fungsi

Ada beberapa metode yang dapat digunakan untuk menghitung limit fungsi, di antaranya adalah:

Metode Substitusi Langsung

Metode ini digunakan ketika fungsi dapat langsung dihitung pada nilai yang dimaksud tanpa melakukan perhitungan tambahan. Untuk menggunakan metode ini, cukup substitusikan nilai yang dimaksud ke dalam fungsi dan hitung hasilnya.

Contoh:

Diberikan fungsi f(x) = 2x + 3. Hitunglah limit fungsi f(x) ketika x mendekati 2.

Penyelesaian:
Substitusikan x = 2 ke dalam fungsi f(x):
f(2) = 2(2) + 3 = 7

Sehingga, limit fungsi f(x) ketika x mendekati 2 adalah 7.

Metode Penyederhanaan

Metode ini digunakan ketika fungsi dapat disederhanakan menjadi bentuk yang lebih mudah untuk dihitung limitnya. Caranya adalah dengan melakukan operasi aljabar yang tepat untuk menyederhanakan fungsi.

Contoh:

Diberikan fungsi f(x) = (x^2 - 1) / (x - 1). Hitunglah limit fungsi f(x) ketika x mendekati 1.

Penyelesaian:
Menggunakan metode faktorisasi, kita dapat menyederhanakan fungsi menjadi:
f(x) = (x + 1)

Sehingga, limit fungsi f(x) ketika x mendekati 1 adalah 2.

Metode Aturan L’Hospital

Metode ini digunakan ketika fungsi menghasilkan bentuk tidak tentu seperti 0/0 atau ∞/∞ ketika nilai limit dihitung. Metode ini memanfaatkan aturan turunan untuk menghitung limit fungsi tersebut.

Contoh:

Diberikan fungsi f(x) = (e^x - 1) / x. Hitunglah limit fungsi f(x) ketika x mendekati 0.

Penyelesaian:
Terapkan aturan L‘Hospital dengan menghitung turunan pada pembilang dan penyebut fungsi:
f’
(x) = (e^x) / 1 = e^x

Substitusikan x = 0 ke dalam turunan fungsi:
f‘(0) = e^0 = 1

Sehingga, limit fungsi f(x) ketika x mendekati 0 adalah 1.

Rumus limit tak hingga 

Rumus limit tak hingga ini dapat dirumuskan seperti berikut:

Rumus Limit

Agar anda lebih paham mengenai rumus limit tak hingga di atas. Maka saya akan membagikan contoh soal limit tak hingga terkait rumus tersebut. Adapun contoh soal dan pembahasannya yaitu:

Tentukan nilai limit tak hingga di bawah ini!

Rumus Limit

Pembahasan.
Dalam contoh soal ini kita dapat melihat bahwa pembilangnya memiliki pangkat tertinggi yang bernilai 3 (m), kemudian penyebutnya memiliki nilai pangkat paling tinggi berupa 2 (n). Maka dari itu nilai m > n, sehingga limitnya bernilai tak hingga (∞).

Rumus limit tak hingga akar 

Rumus limit tak hingga akar dapat dirumuskan seperti berikut:

Rumus Limit

Contoh soal:

Rumus Limit

Nilai limit dari persamaan di atas adalah ….
A. 3/4
B. 4/5
C. 6/5
D. 5/4
E. 4/3

Jawab:

Soal limit di atas memiliki nilai a = p = 9, sehingga nilai limitnya dapat dicari menggunakan rumus:

Rumus Limit

Perhatikan cara mendapatkan nilai limit tak hingga berikut.

Rumus Limit

Jadi, nilai limit persamaan tersebut adalah 8/6 = 4/3.

Demikianlah teman-teman pembahasan kita hari ini tentang rumus limit, semoga bermanfaat dan jangan lupa di share ke teman-teman yang lain ya.

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *