Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the wp-pagenavi domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/akreditasi.org/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the loginizer domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/akreditasi.org/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the schema-and-structured-data-for-wp domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/akreditasi.org/wp-includes/functions.php on line 6114
Tentukan: Nilai a dan b Tentukan bentuk fungsi f(x) Tentukan Nilai f(-2) - Akreditasi.org

Tentukan: Nilai a dan b Tentukan bentuk fungsi f(x) Tentukan Nilai f(-2)

Ringkasan atau inti cerita pada cerpen terletak pada? 

Diketahui f(x) =ax+b dengan f(3)=1 dan f(1)=-1.

Tentukan:
Nilai a dan b
Tentukan bentuk fungsi f(x)
Tentukan Nilai f(-2)

Jawaban:

Untuk menyelesaikan soal diatas, kita bisa menggunakan metode eliminasi dan substitusi seperti pengerjaan pada soal sistem persamaan linear dua variabel

A. Nilai a = 1 dan b = -2
B. Bentuk fungsi f(x) = x – 2
C. Nilai f(-2) = -4

Pembahasan:

Nilai a dan b

f(x) = ax + b
f(3) = 1 ⇒ 3a + b = 1
f(1) = -1 ⇒ a + b = -1
————– –
2a = 2
a = 1

Substitusikan a = 1 ke persamaan (a + b = -1)
a + b = -1
1 + b = -1
b = -1 – 1
b = -2

Jadi nilai a = 1 dan b = -2

Bentuk fungsi f(x)

f(x) = ax + b
f(x) = 1x + (-2)
f(x) = x – 2

Nilai f(-2)

f(x) = x – 2
f(-2) = -2 – 2
f(-2) = -4

Kesimpulan

A. Nilai a = 1 dan b = -2
B. Bentuk fungsi f(x) = x – 2
C. Nilai f(-2) = -4

 

Pertanyaan Berikutnya:  Sebutkan rangkaian gerakan pada teknik lompat jauh​

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *